首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   0篇
  国内免费   3篇
航空   113篇
航天技术   59篇
航天   57篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   13篇
  2017年   7篇
  2016年   1篇
  2015年   4篇
  2014年   10篇
  2013年   19篇
  2012年   10篇
  2011年   21篇
  2010年   10篇
  2009年   9篇
  2008年   14篇
  2007年   15篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   2篇
  1967年   3篇
  1966年   1篇
排序方式: 共有229条查询结果,搜索用时 31 毫秒
71.
This paper presents the results of a mission concept study for an autonomous micro-scale surface lander also referred to as PANIC – the Pico Autonomous Near-Earth Asteroid In Situ Characterizer. The lander is based on the shape of a regular tetrahedron with an edge length of 35 cm, has a total mass of approximately 12 kg and utilizes hopping as a locomotion mechanism in microgravity. PANIC houses four scientific instruments in its proposed baseline configuration which enable the in situ characterization of an asteroid. It is carried by an interplanetary probe to its target and released to the surface after rendezvous. Detailed estimates of all critical subsystem parameters were derived to demonstrate the feasibility of this concept. The study illustrates that a small, simple landing element is a viable alternative to complex traditional lander concepts, adding a significant science return to any near-Earth asteroid (NEA) mission while meeting tight mass budget constraints.  相似文献   
72.
This paper considers the detection of a known constant signal in an additive non-Gaussian noise under the assumptions of discrete time and statistically independent noise samples. The objective is to determine how large sample size must be before the easily computed asymptotic relative efficiency becomes a valid measure of performance. The exact small-sample error probabilities are calculated for a Neyman-Pearson optimal nonlinear detector consisting of a zeromemory nonlinearity followed by summation and threshold comparison. "Large-tailed" noise having a double exponential distribution is used as an example. The exact distribution of the test statistics for a linear detector and for the Neyman-Pearson optimal detector are calculated. Then the relative efficiency of the Neyman-Pearson optimal detector, as compared to a linear detector, is computed in order to study the rate of approach of the relative efficiency to its asymptotic value.  相似文献   
73.
Given the need for a light source, cyanobacteria and other photosynthetic microorganisms can be difficult and expensive to grow in large quantities. Lighted growth chambers and incubators typically cost 50-100% more than standard microbiological incubators. Self-shading of cells in liquid cultures prevents the growth of dense suspensions. Growing liquid cultures on a shaker table or lighted shaker incubator achieves greater cell densities, but adds considerably to the cost. For experiments in which gases other than air are required, the cost for conventional incubators increases even more. We describe an apparatus for growing photosynthetic organisms in exotic atmospheres that can be built relatively inexpensively (approximately 100 dollars U.S.) using parts available from typical hardware or department stores (e.g., Wal-mart or K-mart). The apparatus uses microfiltered air (or other gases) to aerate, agitate, and mix liquid cultures, thus achieving very high cell densities (A750 > 3). Because gases are delivered to individual culture tubes, a variety of gas mixes can be used without the need for enclosed chambers. The apparatus works with liquid cultures of unicellular and filamentous species, and also works with agar slants.  相似文献   
74.
Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances 相似文献   
75.
The operational Terrestrial Reference Frames (TRFs) realized through the evaluation of broadcast ephemerides for GPS, GLONASS, Galileo, BeiDou-2 and BeiDou-3 have been compared to IGS14, the TRF realized by the International GNSS Service (IGS). The TRFs realized by the GPS, GLONASS, Galileo, and BeiDou-2 and BeiDou-3 broadcast ephemerides are the orbital realizations of WGS 84 (G1762′), PZ90.11, GTRF19v01, and BDCS respectively. These TRFs are compared using up to 56 days of data (21 July-14 Sept 2019) at a 5 or 15-min rate. The operational TRFs are compared to IGS14 in a 7-parameter similarity (Helmert) transformation. Numerical results show that the operational GNSS TRFs differ from IGS14 at a level no greater than 4 cm for Galileo, 6 cm for GPS and BeiDou-3, 13 cm for GLONASS, and 48 cm for a limited set of BeiDou-2 Medium Earth Orbit (MEO) vehicles.  相似文献   
76.
Cometary Dust     
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth’s orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.  相似文献   
77.
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft has measured molecular oxygen (O2) in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first unequivocal detection of O2 in a cometary environment. The large relative abundance of O2 in 67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in comet 67P/C-G, and potentially other comets. Since its detection, there have been a number of hypotheses put forward to explain the production and origin of O2 in the comet. These hypotheses cover a wide range of possibilities from various in situ production mechanisms to protosolar nebula and primordial origins. Here, we review the O2 formation mechanisms from the literature, and provide a comprehensive summary of the current state of knowledge of the sources and origin of cometary O2.  相似文献   
78.
79.
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ~100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ~10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ~7% and brightness temperature errors of less than 1?K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology-Extrasolar terrestrial planets-Habitability-Planetary science-Radiative transfer. Astrobiology 11, 393-408.  相似文献   
80.
The design of Space Station Freedom's electric power system (EPS) is reviewed, highlighting the key design goals of performance, low cost, reliability, and safety. The EPS design is divided into three separate areas: power generation and storage, power distribution, and power management and control. Both photovoltaic and solar dynamic power generation and storage systems are used. Tradeoff study results that illustrate the competing factors responsible for many of the more important design decisions are discussed. Reliability and maintainability, as well as verification and testing, are addressed  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号